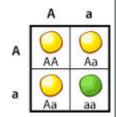
Punnett Squares

Vocabulary

P Generation - the parent generation


 F_1 Generation - the first generation of offspring

F₂ **Generation** - the second generation of offspring

Genotypes	Phenotypes
AA	Yellow
Aa	O Yellow
aa	Green

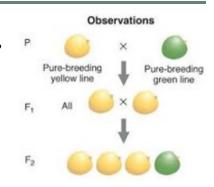
Cross -

the genetic recombination of known parents to determine genetic results of the offspring; Example: Aa x Aa

Punnett Squares -

a diagram/table that is used to predict an outcome of a particular cross or breeding experiment for specific genotypes

When completing a Punnett Square:

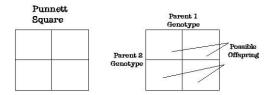

- Parent Genotypes go outside
- · Offspring Genotypes will be inside

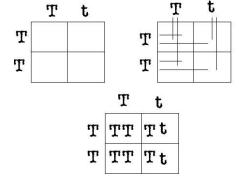
Identifying Generations

What are the phenotypes of the P Generation?

What are the **genotypes** of the F₁ Generation?

What are the **genotypes** of the F₂ Generation?




To Complete a Punnett Square

- 1. Place the genotype of Parent 1 at the top.
- 2. Place the genotype of $\frac{}{}$ Parent 2 on the left side.
- 3. <u>Parent 1:</u> Like a multiplication table, bring each letter into the **two** boxes **below** it. Capital letters go first.
- 4. <u>Parent 2:</u> Like a multiplication table, bring each letter into the **two** boxes **beside** it. Capital letters go first.
- 5. ALL four boxes should have TWO letters.
- 6. **Determine the prediction for the cross** by counting the offspring that are *homozygous dominant, heterozygous dominant, and homozygous recessive.*

In this cross:

- What is the genotype of Homozygous Dominant?
- How many offspring are Homozygous Dominant?
- 3. What is the genotype of <u>Heterozygous</u> <u>Dominant</u>?
- 4. **How many** offspring are <u>Heterozygous</u> Dominant?
- 5. What is the **genotype** of *Homozygous* Recessive?

6. How many offspring are Homozygous Recessive?

Go to Page 2

Vocabulary

Incomplete Dominance -

one allele for a specific trait is not completely expressed or dominant over its paired allele; the result is a third phenotype which is a combination of the two alleles; Example: In snapdragon flowers: red, pink, and white (CRCR, CRCW, and CWCW)

You Do One!

Allele = phenotype: F = freckles, f = no freckles

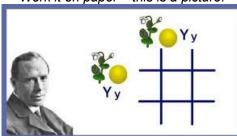
Work it on paper – this is a picture!

In this cross:

- 1. What is the **genotype** of <u>Homozygous Dominant</u>?
- 2. How many offspring are Homozygous Dominant?
- 3. What is the **genotype** of *Heterozygous Dominant*?
- 4. **How many** offspring are <u>Heterozygous Dominant</u>?
- 5. What is the **genotype** of *Homozygous Recessive*?
- 6. How many offspring are Homozygous Recessive?

Use Y instead of A.

Genotypes	Phenotypes
AA	Yellow
Aa	Yellow
aa	Green


Try it again!

FIRST, identify the Trait and Alleles

- 1. Dominant Trait
 - a. Color =
 - b. Allele Combinations =
- 2. Recessive Trait
 - a. Color =
 - b. Allele Combinations =

NOW do the Cross:

Work it on paper – this is a picture!

RESULTS of the Cross

- 3. YY =
- 4. Yy =
- 5. yy =
- 6. Homozygous = __ of 4
- 7. Heterozygous = __ of 4
- 8. % Yellow =
- 9. % green =