VOCABULARY

Carolus Linneaus – Swedish scientist who developed a classification system

Taxonomy – the science of naming and classifying living things

Classification System – largest to smallest groups

Domains – largest classification group; Archaea, Bacteria, and Eukarya

Kingdom – second largest classification group; Archaebacteria, Eubacteria, Protista, Fungi, Plantae, Animalia

Prokaryotes – cells do NOT have a nucleus

Eukaryotes – cells DO have nucleus

Dichotomous Key -

dichotomous means "divided into two parts"

- a key for the identification of organisms based on a series of choices between alternative characteristics
- dichotomous keys always give
 TWO choices in each step

QUIZ 3 NOTES

SCIENTIFIC NAMES

Latin is the language used to write scientific names. Latin is a dead language.

Why is Latin perfect for Scientific Names?

<type here>

To write Scientific Names, scientists follow THREE Rules:

- 1. Genus name is capitalized
- 2. species is lower case
- 3. in italics or underlined not both
- **Example:** Homo sapiens or <u>Homo sapiens</u> = human

Using your Last name as the Genus name and your first name as the species name, what would your scientific name look

like: <type here>

CLASSIFICATION OF ORGANISMS

CLASSIFICATION CHARATERISTICS

(fill-in-the-blanks)

1. Cell type

a. __ (lacks a nucleus)

OR

b. __ (has a nucleus)

2. Cell Structures

- a. __ provide support for the cell (present/absent, composition)
- b. __ where photosynthesis takes place (present/absent)
- 3. Body type –

a. _ (one cell)

OR

b. __ (body has many cells)

4. **Nutrition** – how the organism gets sugars/food:

a. __ (makes own food)

OR

b. __ (does not make food, must consume food)

CHARACTERISTICS OF EACH KINGDOM

(fill-in-the-blanks)

 <u>Archaebacteria</u>: simple prokaryotes, unicellular, autotrophs or heterotrophs; have cell walls, found in extreme environments

Example:

 <u>Eubacteria</u>: simple prokaryotes, unicellular, autotrophs or heterotrophs; have cell walls, found everywhere, some helpful, some harmful

Example:

 <u>Protista</u>: mostly unicellular, some multicellular, autotrophs or heterotrophs; cell walls, some have chloroplasts, simple eukaryotes

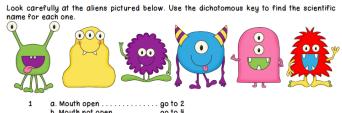
Example:

 <u>Fungi</u>: some unicellular, most multicellular; more complex eukaryotes, heterotrophs, have cell walls

Example:

 <u>Plantae</u>: multicellular, eukaryotes, autotrophs, have cell walls and chloroplasts

Example:


 <u>Animalia</u>: multicellular, eukaryotes, heterotrophs; most complex organisms

Example:

DICHOTOMOUS KEY USE

Use the key to identify the scientific name of each Alien.

Identifying Aliens with a Dichotomous Key

1	a. Mouth open go to 2 b. Mouth not open go to 4
2	a. Arms go to 3
	b. No Arms
3	a. Hairy Alienus hairicus
	b. Not hairy Alienus tritoothicus
4	a. No horns go to 5
	b. Horns
5	a. No legs
	b. Legs Alienus fuzzicus

The Aliens are A through F (left to right or green to red)

Α.

В.

C.

D.

E.

F.